organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N,N-Dimethyl-4-[(*E*)-phenyliminomethyl]aniline

Lei Zheng, Xiu-juan Yin, Cong-ling Yang, Ying Li and Shu-fan Yin*

College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China

Correspondence e-mail: chuandayouji217@163.com

Received 13 January 2009; accepted 1 February 2009

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.003 Å; R factor = 0.047; wR factor = 0.150; data-to-parameter ratio = 14.8.

The title compound, $C_{15}H_{16}N_2$, contains two aromatic rings linked through an imino group. The molecule exhibits an *E* configuration with respect to the C—N bond. The dihedral angle between the aromatic rings is 61.96 (1)°.

Related literature

For the physical properties and physiological activity of Schiff bases, see: Hodnett & Dunn (1970); Nyarku & Mavuso (1998); Tang & Vanslyke (1987); Yu *et al.* (2001). For related structures, see: Ahmet *et al.* (1994); Nakai *et al.* (1976); Wang & Wang (2007, 2008).

Experimental

Crystal data C₁₅H₁₆N₂

 $M_r = 224.30$

Monoclinic, $P2_1/c$	Z = 4
$a = 9.441 (4) \text{ Å}^{-1}$	Mo $K\alpha$ radiation
b = 8.356 (3) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 17.245 (5) Å	T = 292 (2) K
$\beta = 110.97 \ (2)^{\circ}$	$0.52 \times 0.48 \times 0.46 \text{ mm}$
V = 1270.4 (8) Å ³	
Data collection	
Enraf-Nonius CAD-4	1336 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.012$
Absorption correction: none	3 standard reflections
3023 measured reflections	every 200 reflections
2328 independent reflections	intensity decay: 1.8%
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.047$	157 parameters
$wR(F^2) = 0.150$	H-atom parameters constrained

Data collection: *DIFRAC* (Gabe *et al.*, 1993); cell refinement: *NRCVAX* (Gabe *et al.*, 1989); data reduction: *NRCVAX*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia,1997); software used to prepare material for publication: *SHELXL97*.

 $\Delta \rho_{\text{max}} = 0.13 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.14 \text{ e } \text{\AA}^{-3}$

The authors thank Mr Zhi-Hua Mao, Sichuan University, for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2134).

References

S = 1.02

2328 reflections

Ahmet, M. T., Silver, J. & Houlton, A. (1994). Acta Cryst. C50, 1814–1818. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Gabe, E. J., White, P. S. & Enright, G. D. (1993). *DIFRAC*. American Crystallographic Association, Pittsburgh Meeting, Abstract PA 104.
- Hodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768-770.

Nakai, H., Shiro, M., Emuzi, K., Sakata, S. & Kubota, T. (1976). Acta Cryst. B32, 1827–1833.

Nyarku, S. K. & Mavuso, E. (1998). S. Afr. J. Chem. 51, 168-172.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tang, C. W. & Vanslyke, S. A. (1987). Appl. Phys. Lett. 51, 913-915.

- Wang, Q. & Wang, D.-Q. (2007). Acta Cryst. E63, 04838.
- Wang, Q. & Wang, D.-Q. (2008). Acta Cryst. E64, o51.
- Yu, G., Liu, Y. Q. & Song, Y. R. (2001). Synth. Met. 117, 211-214.

supplementary materials

Acta Cryst. (2009). E65, o506 [doi:10.1107/S1600536809003791]

N,*N*-Dimethyl-4-[(*E*)-phenyliminomethyl]aniline

L. Zheng, X. Yin, C. Yang, Y. Li and S. Yin

Comment

Schiff base, because of its unique light, electric, magnetic and other physical material properties (Tang & Vanslyke, 1987; Yu *et al.*, 2001), good coordination chemistry performance, unique anti-bacterial, anti-cancer and other physiological activities (Nyarku & Mavuso, 1998; Hodnett & Dunn, 1970), has aroused broad, systematic and in-depth theoretical and applied research. Several crystal sturctures of schiff bases, which are closely related to the title compound, have been reported (eg., Ahmet *et al.*, 1994; Nakai *et al.*, 1976; Wang & Wang, 2008; Wang & Wang, 2007). We report herein the crystal sturcture of the title schiff base, N,N-dimethyl-4-[(E)-(phenylimino)methyl]benzenamine, (I).

The molecule of the title compound (Fig. 1) adopts an E configuration probably owing to the steric effect. The C(10)-N(2)-C(9)-C(6) and C(7)-C(6)-C(9)-N(2) torsion angles are -176.70 (15) and 9.2 (3)°, respectively. There are no intermolecular hydrogen-bonding interactions in the crystal structure. The packing is essentially stabilized *via* van der Waals forces.

Experimental

To a solution of *N*,*N*-dimethyl-4-aminobenzaldehyde (0.75 g, 5 mmol) in ethanol (10 ml) and aniline (0.91 ml, 10 mmol) were added three drops of acetic acid as a catalyst. The mixture was heated to reflux and the reaction monitored by TLC. After completion of the reaction, on cooling to room temperature, crystals were obtained. Colourless crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution at room temperature.

Refinement

H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and included in the refinement using a riding model, with $U_{iso}(H) = 1.2U_{eq}$ (methylene C, aromatic C), $U_{iso}(H) = 1.5U_{eq}$ (methyl C).

Figures

Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.

N,N-Dimethyl-4-[(E)-phenyliminomethyl]aniline

Crystal data

 $C_{15}H_{16}N_2$ $F_{000} = 480$ $M_r = 224.30$ $D_x = 1.173 \text{ Mg m}^{-3}$

Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 9.441 (4) Å
b = 8.356(3) Å
c = 17.245 (5) Å
$\beta = 110.97 \ (2)^{\circ}$
$V = 1270.4 (8) \text{ Å}^3$
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.012$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.3^{\circ}$
T = 292 K	$h = -11 \rightarrow 11$
$\omega/2\theta$ scans	$k = -10 \rightarrow 0$
Absorption correction: none	$l = -20 \rightarrow 10$
3023 measured reflections	3 standard reflections
2328 independent reflections	every 200 reflections
1336 reflections with $I > 2\sigma(I)$	intensity decay: 1.8%

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.047$	$w = 1/[\sigma^2(F_o^2) + (0.0913P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.150$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.02	$\Delta \rho_{max} = 0.13 \text{ e} \text{ Å}^{-3}$
2328 reflections	$\Delta \rho_{min} = -0.13 \text{ e } \text{\AA}^{-3}$
157 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.032 (10)

Mo *K* α radiation $\lambda = 0.71073$ Å

 $\theta = 4.4-7.1^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 292 KBlock, colourless $0.52 \times 0.48 \times 0.46 \text{ mm}$

Cell parameters from 20 reflections

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-

factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.30901 (17)	1.50607 (18)	-0.07311 (10)	0.0722 (5)
N2	0.28787 (18)	0.86291 (19)	0.13032 (9)	0.0668 (5)
C1	0.3837 (2)	1.4806 (2)	-0.13194 (12)	0.0815 (6)
H1A	0.4831	1.4372	-0.1037	0.122*
H1B	0.3924	1.5807	-0.1572	0.122*
H1C	0.3254	1.4071	-0.1740	0.122*
C2	0.2456 (3)	1.6630 (2)	-0.07117 (15)	0.0907 (7)
H2A	0.1369	1.6571	-0.0944	0.136*
H2B	0.2810	1.7363	-0.1031	0.136*
H2C	0.2768	1.6997	-0.0148	0.136*
C3	0.28724 (19)	1.3833 (2)	-0.02654 (11)	0.0587 (5)
C4	0.2055 (2)	1.4036 (2)	0.02656 (12)	0.0687 (5)
H4	0.1636	1.5029	0.0300	0.082*
C5	0.1867 (2)	1.2792 (2)	0.07319 (12)	0.0686 (5)
Н5	0.1329	1.2965	0.1082	0.082*
C6	0.2449 (2)	1.1275 (2)	0.07036 (11)	0.0616 (5)
C7	0.3258 (2)	1.1071 (2)	0.01746 (10)	0.0636 (5)
H7	0.3669	1.0073	0.0142	0.076*
C8	0.3462 (2)	1.2297 (2)	-0.02946 (11)	0.0625 (5)
H8	0.4004	1.2115	-0.0643	0.075*
C9	0.2222 (2)	0.9985 (2)	0.12090 (11)	0.0681 (5)
Н9	0.1550	1.0160	0.1484	0.082*
C10	0.2496 (2)	0.7447 (2)	0.17785 (11)	0.0619 (5)
C11	0.1006 (2)	0.7114 (2)	0.16925 (12)	0.0715 (6)
H11	0.0217	0.7702	0.1321	0.086*
C12	0.0694 (2)	0.5918 (3)	0.21553 (13)	0.0795 (6)
H12	-0.0307	0.5700	0.2093	0.095*
C13	0.1848 (3)	0.5041 (2)	0.27093 (13)	0.0796 (6)
H13	0.1629	0.4243	0.3025	0.096*
C14	0.3326 (2)	0.5352 (2)	0.27936 (12)	0.0744 (6)
H14	0.4110	0.4757	0.3165	0.089*
C15	0.3645 (2)	0.6536 (2)	0.23315 (11)	0.0682 (5)
H15	0.4648	0.6733	0.2389	0.082*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0775 (11)	0.0677 (10)	0.0723 (11)	0.0087 (8)	0.0278 (9)	0.0044 (8)
N2	0.0681 (10)	0.0769 (11)	0.0590 (9)	0.0019 (8)	0.0270 (8)	-0.0015 (8)
C1	0.0882 (14)	0.0911 (14)	0.0695 (12)	-0.0005 (11)	0.0338 (11)	0.0092 (11)
C2	0.0945 (16)	0.0719 (13)	0.1018 (16)	0.0086 (11)	0.0305 (14)	0.0059 (12)
C3	0.0538 (10)	0.0656 (11)	0.0530 (10)	-0.0001 (8)	0.0146 (8)	-0.0077 (9)

supplementary materials

C4	0.0696 (12)	0.0667 (11)	0.0716 (12)	0.0094 (9)	0.0276 (10)	-0.0083 (10)
C5	0.0684 (12)	0.0816 (14)	0.0637 (11)	0.0060 (10)	0.0333 (10)	-0.0109 (10)
C6	0.0620 (11)	0.0713 (12)	0.0535 (10)	0.0026 (9)	0.0231 (9)	-0.0057 (9)
C7	0.0682 (12)	0.0637 (11)	0.0630 (11)	0.0070 (9)	0.0285 (10)	-0.0066 (9)
C8	0.0669 (12)	0.0682 (12)	0.0580 (11)	0.0063 (9)	0.0290 (9)	-0.0048 (9)
C9	0.0657 (12)	0.0836 (14)	0.0594 (11)	0.0019 (10)	0.0278 (9)	-0.0064 (10)
C10	0.0642 (12)	0.0724 (11)	0.0528 (10)	-0.0030 (10)	0.0255 (9)	-0.0095 (9)
C11	0.0607 (12)	0.0852 (14)	0.0656 (12)	-0.0022 (10)	0.0191 (10)	-0.0030 (11)
C12	0.0657 (12)	0.0961 (15)	0.0779 (13)	-0.0151 (11)	0.0271 (11)	-0.0076 (12)
C13	0.0881 (15)	0.0816 (14)	0.0746 (13)	-0.0110 (12)	0.0358 (12)	-0.0003 (11)
C14	0.0770 (13)	0.0800 (13)	0.0680 (12)	0.0054 (11)	0.0281 (10)	0.0050 (11)
C15	0.0619 (12)	0.0796 (12)	0.0680 (12)	0.0011 (10)	0.0291 (10)	-0.0036 (11)

Geometric parameters (Å, °)

N1—C3	1.363 (2)	C6—C7	1.394 (2)
N1—C1	1.444 (2)	С6—С9	1.449 (3)
N1—C2	1.447 (2)	С7—С8	1.361 (2)
N2—C9	1.274 (2)	С7—Н7	0.9300
N2—C10	1.411 (2)	С8—Н8	0.9300
C1—H1A	0.9600	С9—Н9	0.9300
C1—H1B	0.9600	C10—C15	1.388 (3)
C1—H1C	0.9600	C10-C11	1.388 (3)
C2—H2A	0.9600	C11—C12	1.375 (3)
C2—H2B	0.9600	C11—H11	0.9300
C2—H2C	0.9600	C12—C13	1.375 (3)
C3—C4	1.403 (2)	C12—H12	0.9300
C3—C8	1.407 (2)	C13—C14	1.375 (3)
C4—C5	1.364 (2)	С13—Н13	0.9300
C4—H4	0.9300	C14—C15	1.370 (3)
C5—C6	1.389 (2)	C14—H14	0.9300
С5—Н5	0.9300	C15—H15	0.9300
C3—N1—C1	121.18 (15)	C8—C7—C6	121.63 (16)
C3—N1—C2	121.17 (16)	С8—С7—Н7	119.2
C1—N1—C2	117.39 (17)	С6—С7—Н7	119.2
C9—N2—C10	118.88 (16)	C7—C8—C3	121.55 (16)
N1—C1—H1A	109.5	С7—С8—Н8	119.2
N1—C1—H1B	109.5	С3—С8—Н8	119.2
H1A—C1—H1B	109.5	N2—C9—C6	124.65 (17)
N1—C1—H1C	109.5	N2—C9—H9	117.7
H1A—C1—H1C	109.5	С6—С9—Н9	117.7
H1B—C1—H1C	109.5	C15-C10-C11	118.49 (18)
N1—C2—H2A	109.5	C15-C10-N2	118.89 (16)
N1—C2—H2B	109.5	C11—C10—N2	122.57 (18)
H2A—C2—H2B	109.5	C12-C11-C10	120.17 (19)
N1—C2—H2C	109.5	C12—C11—H11	119.9
H2A—C2—H2C	109.5	C10—C11—H11	119.9
H2B—C2—H2C	109.5	C13—C12—C11	120.63 (19)
N1—C3—C4	121.86 (16)	C13—C12—H12	119.7

N1—C3—C8	121.37 (16)	C11—C12—H12	119.7
C4—C3—C8	116.77 (17)	C12-C13-C14	119.64 (19)
C5—C4—C3	120.70 (16)	С12—С13—Н13	120.2
С5—С4—Н4	119.7	C14—C13—H13	120.2
C3—C4—H4	119.7	C15—C14—C13	120.05 (19)
C4—C5—C6	122.56 (16)	C15-C14-H14	120.0
С4—С5—Н5	118.7	C13-C14-H14	120.0
С6—С5—Н5	118.7	C14—C15—C10	121.00 (18)
C5—C6—C7	116.79 (17)	C14—C15—H15	119.5
C5—C6—C9	120.79 (17)	C10-C15-H15	119.5
C7—C6—C9	122.42 (17)		
C1—N1—C3—C4	-175.41 (16)	C10—N2—C9—C6	-176.70 (15)
C2—N1—C3—C4	-1.3 (3)	C5—C6—C9—N2	-170.32 (18)
C1—N1—C3—C8	4.7 (3)	C7—C6—C9—N2	9.2 (3)
C2—N1—C3—C8	178.74 (17)	C9—N2—C10—C15	-137.72 (18)
N1—C3—C4—C5	-179.28 (17)	C9—N2—C10—C11	44.8 (2)
C8—C3—C4—C5	0.6 (3)	C15-C10-C11-C12	0.7 (3)
C3—C4—C5—C6	-0.7 (3)	N2-C10-C11-C12	178.17 (16)
C4—C5—C6—C7	0.5 (3)	C10-C11-C12-C13	0.2 (3)
C4—C5—C6—C9	-179.94 (17)	C11-C12-C13-C14	-0.8 (3)
C5—C6—C7—C8	-0.3 (3)	C12-C13-C14-C15	0.4 (3)
C9—C6—C7—C8	-179.89 (17)	C13-C14-C15-C10	0.5 (3)
C6—C7—C8—C3	0.4 (3)	C11-C10-C15-C14	-1.0 (3)
N1—C3—C8—C7	179.43 (16)	N2-C10-C15-C14	-178.61 (16)
C4—C3—C8—C7	-0.5 (3)		

